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Background: KD-based Information Exchange Mechanism (single teacher)

The student model is trained using two types of losses:

Fully-supervised loss (L4, ): Encourage the student’s “hard” prediction to align
closely with the ground-truth labels of the input samples

Distillation loss (Lkp): Encourages the student's output
probabilities /representations to align closely with those of the teacher

» Typically computed using Cross-Entropy (CE) and Kullback-Leibler (KL)
Divergence (a wide range of information distance functions remains

underexplored in distributed learning literature)

Our main contributions
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L | Network of clients that cooperate for DNN training using Knowledge
! Loss Distillation (KD)

* Each client acts as both learner (student) and source of knowledge
(teacher) for others
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* Since we have multiple teachers for a single student, we proposed two altematives for computing the distillation loss.
» Sum of pairwise dissimilarities between the currentclient's and remote clients' soft-predictions
» Dissimilarity between the current client’s soft-predictions and the average of remote clients' soft-predictions

* We performed experiments using three interconnected clients and tested different divergence functions for the KD loss:

»  Cross Entropy: CE(q:p) = —Z§V=1 q;logp;

»  Kullback-Leibler Divergence: KL(q:p) = Z?] qi 10g$

> Jensen-Shannon Divergence: JS(q,p) =-; ( (q q—ﬂ') + KL(p ‘l_ﬂ’))

> Structural Entropic Distance: SED(q,p) = N C(p) = b~ it pilogs p;
ructural Entropic Distance: q,p W(q) p) = =

»  Triangular Divergence:

TD(q p) =1-— ZN 2q:p;

Lqi+p;

We examined scenarios where the data is uniform across the clients, as well as cases in which the distribution is non-uniform
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We evaluated different information dissimilarity measures in a distributed KD setting across various data distributions
The KD-loss based on the dissimilarity between the current client’s soft-predictions and the average of soft-predictions from remote clients showed the

best trade-off between accuracy and efficiency

Inthe iid case, all measures have similar accuracy, however, the distance measures impact model training on non-iid data
The commonly used Cross-entropy and Kullback-Leibler divergences are not always the most effective!
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