Information Dissimilarity Measures in Decentralized **Knowledge Distillation: A Comparative Analysis**

UNIVERSITÀ DI PISA

St Andrews

Joaquim Mbasa Molo^{1,2}, Lucia Vadicamo¹, Emanuele Carlini¹, Claudio Gennaro¹, Richard Connor³

¹Institute of Information Science and Technologies (ISTI), CNR, Pisa, Italy ²Department of Computer Science, University of Pisa, Pisa, Italy ³School of Computer Science, University of St Andrews, St Andrews, Scotland

joaquim.molo@phd.unipi.it 0 joaquimbasa/Distributed_KD_Information_Dissimilarity

Client 1 Softmax (T=1) Client A Hard Predictions

Background: KD-based Information Exchange Mechanism (single teacher)

The student model is trained using two types of losses:

- **Fully-supervised loss** (\mathcal{L}_{stu}): Encourage the student's "hard" prediction to align closely with the ground-truth labels of the input samples
- **Distillation loss** (\mathcal{L}_{KD}): Encourages the student's output probabilities/representations to align closely with those of the teacher
 - Typically computed using Cross-Entropy (CE) and Kullback-Leibler (KL) ⊳ Divergence (a wide range of information distance functions remains underexplored in distributed learning literature)

Our main contributions

•

- Since we have multiple teachers for a single student, we proposed two alternatives for computing the distillation loss.
 - Sum of pairwise dissimilarities between the current client's and remote clients' soft-predictions
 - \triangleright Dissimilarity between the current client's soft-predictions and the average of remote clients' soft-predictions

We performed experiments using three interconnected clients and tested different divergence functions for the KD loss:

- $CE(\boldsymbol{q}; \boldsymbol{p}) = -\sum_{i=1}^{N} q_i \log p_i$ Cross Entropy: $KL(\boldsymbol{q};\boldsymbol{p}) = \sum_{i}^{N} q_{i} \log \frac{q_{i}}{n_{i}}$ Kullback-Leibler Divergence: >
- $JS(\boldsymbol{q}, \boldsymbol{p}) = \frac{1}{2} \left(KL\left(\boldsymbol{q}; \frac{\boldsymbol{q}+\boldsymbol{p}}{2}\right) + KL\left(\boldsymbol{p}; \frac{\boldsymbol{q}+\boldsymbol{p}}{2}\right) \right)$ $SED(\boldsymbol{q}, \boldsymbol{p}) = \frac{C\left(\frac{\boldsymbol{q}+\boldsymbol{p}}{2}\right)}{\sqrt{C(\boldsymbol{p})C(\boldsymbol{q})}} \qquad C(\boldsymbol{p}) = b^{-\sum_{l=1}^{N} p_{l} \log_{b} p_{l}}$ $TD(\boldsymbol{q}, \boldsymbol{p}) = 1 \sum_{l=1}^{N} \frac{2q_{l}p_{l}}{q_{l}+p_{l}}$ Jensen-Shannon Divergence: > Structural Entropic Distance: >
- Triangular Divergence:

We examined scenarios where the data is uniform across the clients, as well as cases in which the distribution is non-uniform

CIFAR-10 iid

SUN397 non-iid

Conclusions

- We evaluated different information dissimilarity measures in a distributed KD setting across various data distributions
- The KD-loss based on the dissimilarity between the current client's soft-predictions and the average of soft-predictions from remote clients showed the best trade-off between accuracy and efficiency
- In the iid case, all measures have similar accuracy, however, the distance measures impact model training on non-iid data
- The commonly used Cross-entropy and Kullback-Leibler divergences are not always the most effective!

KD-based Distributed Learning Framework

- Network of clients that cooperate for DNN training using Knowledge Distillation (KD)
- Each client acts as both learner (student) and source of knowledge (teacher) for others
- Each client C^k holds a local dataset D^k and a multi-head neural network \mathcal{M}^k , composed of :
 - Backbone: Extracts feature representations from input data
 - Head 1: Model \mathcal{M}_{h1}^{k} (Backbone + Head 1) trained on local distribution D^{k}
 - Head 2: Model \mathcal{M}_{h2}^k (Backbone + Head 2) trained on D^k using knowledge distillation from connected clients

