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Conclusions
• We evaluated different information dissimilarity measures in a distributed KD setting across various data distributions
• The KD-loss based on the dissimilarity between the current client’s soft-predictions and the average of soft-predictions from remote clients showed the 

best trade-off between accuracy and efficiency
• In the iid case, all measures have similar accuracy, however,  the distance measures impact model training on non-iid data 
• The commonly used Cross-entropy and Kullback-Leibler divergences are not always the most effective!

Our main contributions

• Since we have multiple teachers for a single student, we proposed two alternatives for computing the distillation loss. 
➢ Sum of pairwise dissimilarities between the current client’s and remote clients' soft-predictions
➢ Dissimilarity between the current client’s soft-predictions and the average of remote clients' soft-predictions

• We performed experiments using three interconnected clients and tested different divergence functions for the KD loss: 

➢ Cross Entropy: 𝐶𝐸 𝒒: 𝒑 = − σ𝑖=1
𝑁 𝑞𝑖 log 𝑝𝑖

➢ Kullback-Leibler Divergence:                   𝐾𝐿 𝒒: 𝒑 = σ𝑖
𝑁 𝑞𝑖 log
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➢ Jensen-Shannon Divergence:                  𝐽𝑆 𝒒, 𝒑 =
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➢ Structural Entropic Distance:                  𝑆𝐸𝐷 𝒒, 𝒑 =
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➢ Triangular  Divergence: 𝑇𝐷 𝒒, 𝒑 = 1 − σ𝑖=1
𝑁 2𝑞𝑖𝑝𝑖
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• We examined scenarios where the data is uniform across the clients, as well as cases in which the distribution is non-uniform

CIFAR-10 iid CIFAR-10 non-iid SUN397  non-iid

KD-based Distributed Learning Framework

• Network of clients that cooperate for DNN training using Knowledge 
Distillation (KD)

• Each client acts as both learner (student) and source of knowledge 
(teacher) for others

• Each client 𝑪𝒌 holds a local dataset 𝑫𝒌 and a multi-head neural 
network 𝓜𝒌 , composed of :

➢ Backbone: Extracts feature representations from input data

➢ Head 1: Model 𝓜𝒉𝟏
𝒌 (Backbone + Head 1) trained on local distribution 𝑫𝒌 

➢ Head 2: Model 𝓜𝒉𝟐
𝒌 (Backbone + Head 2) trained on 𝑫𝒌 using knowledge 

distillation from connected clients

Background: KD-based Information Exchange Mechanism (single teacher)

The student model is trained using two types of losses:

• Fully-supervised loss (ℒ𝑠𝑡𝑢): Encourage the student’s “hard” prediction  to align 
closely with the ground-truth labels of the input samples

• Distillation loss (ℒKD): Encourages the student's output 
probabilities/representations to align closely with those of the teacher

➢ Typically computed using  Cross-Entropy (CE) and Kullback-Leibler (KL) 
Divergence (a wide range of information distance functions remains 
underexplored in distributed learning literature)

𝑝 =
𝑒𝑧𝑖/𝑇 𝑥

σ𝑗 𝑒𝑧𝑗/𝑇 𝑥

𝑇 ≡ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
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