Information Dissimilarity Measures in Decentralized Knowledge Distillation: A Comparative Analysis

UNIVERSITÀ DI PISA

St Andrews

Joaquim Mbasa Molo^{1,2}, Lucia Vadicamo¹, Emanuele Carlini¹, Claudio Gennaro¹, Richard Connor³

1 Institute of Information Science and Technologies (ISTI), CNR, Pisa, Italy ²Department of Computer Science, University of Pisa, Pisa, Italy ³School of Computer Science, University of St Andrews, St Andrews, Scotland

 \ge joaquim.molo@phd.unipi.it \bigcap joaquimbasa/Distributed_KD_Information_Dissimilarity

Client 1 Softmax (T=1) Client A Hard Predictions

Background: KD-based Information Exchange Mechanism (single teacher)

The student model is**trained** using two types of losses:

- **Fully-supervised loss** (L_{stu}) : Encourage the student's "hard" prediction to align closely with the ground-truth labels of the inputsamples
- **Distillation loss** (L_{KD}) : Encourages the student's output probabilities/representations to align closely with those of the teacher
	- ➢ Typically computed using Cross-Entropy (CE) and Kullback-Leibler (KL) Divergence (a wide range of information distance functions remains underexplored in distributed learning literature)

Our main contributions

- Since we have multiple teachers for a single student, we proposed two alternatives for computing the distillation loss.
	- Sum of pairwise dissimilarities between the current client's and remote clients' soft-predictions
	- ➢ Dissimilarity between the current client'ssoft-predictions and the **average** of remote clients' soft-predictions

• We performed experiments using three interconnected clients and tested different divergence functionsfor the KDloss:

- $▶$ Cross Entropy: $CE(q; p) = -\sum_{i=1}^{N} q_i \log p_i$ ➢ Kullback-Leibler Divergence: : = σ $\int_i^N q_i \log \frac{q_i}{p_i}$ \triangleright Jensen-Shannon Divergence: $\frac{1}{2}\left(KL\left(q;\frac{q+p}{2}\right)+KL\left(p;\frac{q+p}{2}\right)\right)$
- \triangleright Structural Entropic Distance: $\frac{c(\frac{q+p}{2})}{\overline{c(p)}\overline{c(q)}}$ $C(p) = b^{-\sum_{i=1}^{N} p_i \log_b p_i}$
- ≻ Triangular Divergence: $TD(q, p) = 1 \sum_{i=1}^{N} \frac{2q_i p_i}{q_i + p_i}$

• We examined scenarios where the data is uniform across the clients, as well as cases in which the distribution is non-uniform

Conclusions

- We evaluated different information dissimilarity measuresin a distributed KDsetting across various data distributions
- The KD-loss based on the dissimilarity between the current client's soft-predictions and the *average* of soft-predictions from remote clients showed the best trade-off between accuracy and efficiency
- In the iid case, all measures have similar accuracy, however, the distance measuresimpact model training on *non-iid* data
- The commonly used Cross-entropy and Kullback-Leibler divergences are not always the most effective!

KD-based Distributed Learning Framework

- Network of clients that cooperate for DNN training using **Knowledge Distillation** (KD)
- Each client acts as both learner (**student**) and source of knowledge (**teacher**) for others
- Each client \mathcal{C}^k holds a local dataset \mathcal{D}^k and a multi-head neural network \mathcal{M}^k , composed of :
	- ➢ **Backbone**: Extracts feature representations from input data
	- \triangleright **Head 1**: Model $\boldsymbol{\mathcal{M}}_{h1}^{k}$ (Backbone + Head 1) trained on local distribution \boldsymbol{D}^{k}
	- \triangleright **Head 2**: Model \mathcal{M}_{h2}^k (Backbone + Head 2) trained on D^k using *knowledge distillation* from connected clients

